
（̧ఇ＠ฝ® 5
जの解
Vocøbひી＠ロサ
Words
Please note that there
are no vocabulary words
for：
Topics 5，6，7，13，

digits

The symbols used to show numbers:
$0,1,2,3,4,5,6,7,8,9$

value

value

The number a digit represents, which is determined by the position of the digit

standard form

A common way of writing a number with commas separating groups of three digits starting from the right

Example: 3,458

Commutative Property of Addition

Associative Property of Addition

Commutative Property of Addition

The order of addends can be changed and the sum remains the same.

Example: $3+7=7+3$

Associative Property of

 AdditionAddends can be regrouped and the sum remains the same.

Example: $1+(3+5)=(1+3)+5$

compatible numbers

compatible numbers

\qquad

Commutative Property of Multiplication

Associative Property of Multiplication

Commutative Property of Multiplication

The order of factors can be changed and the product remains the same.
Example: $3 \times 5=5 \times 3$

Associative Property of Multiplication

Factors can be regrouped and the product remains the same. Example: $2 \times(4 \times 10)=(2 \times 4) \times 10$

Identity Property of Multiplication

The product of any number and 1 is that number.

Examples:
$567 \times 1=567$
$56,986 \times 1=56,986$
\qquad

multiple

multiple

The product of a given whole number and another whole number
Multiples of 4

answer boxes
16
36

underestimate

An estimated sum or difference that is less than the actual answer

underestimate (under-estimate)

overestimate
over-estimate

squared

A name for a number to the second power

squared

Distributive Property

cubed

A name for a number to the third power

$$
2^{3}=2 \times 2 \times 2=8
$$

Distributive Property

Multiplying a sum (or difference)
by a number is the same as...

$$
3 \times 3=3^{2}
$$

 $3 \times 3=3^{2}$

 $3 \times 3=3^{2}$}multiplying each number in the sum (or difference) by that number and...
adding the products.
Example: $3 \times(10+4)=$ $(3 \times 10)+(3 \times 4)$

	partial products
partial	Products found by breaking one
of two factors into ones, tens,	
products	nultreds, and so on, and then
other factor each of these by the	

dividend	
divisor	divisor The number used to divide another number
quotient	quotient The answer to a division problem

equivalent fractions

equivalent fractions

Fractions that have different numerators and denominators but name the same amount

simplest form

A fraction in which the greatest common factor of the numerator and denominator is 1

To express $\frac{4}{8}$ in simplest form.

benchmark fraction

benchmark fraction

Common fractions used for estimating, such as:

$$
\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \text { and } \frac{3}{4}
$$

Name

$\left.\begin{array}{|c|c|c|}\hline & \text { face } \\ \text { face } & \text { A flat polygon-shaped } \\ \text { surface of a polyhedron }\end{array}\right]$ face
\qquad

Name

Name

| | Polygon |
| :---: | :---: | :---: |
| polygon | A closed plane figure made up of |
| line segments | |

Name

quadrilateral

A polygon with 4 sides

quadrilateral

pentagon

hexagon

A polygon with 6 sides

\qquad

| | Scalene |
| :---: | :---: | :---: |
| scalene | |
| triangle | triangle |
| right | Atriangle which no sides have |
| the same length | |

Name \qquad

obtuse triangle

A triangle in which one angle is an obtuse angle

obtuse triangle

parallelogram
A quadrilateral with both pairs of opposite sides
parallelogram

trapezoid

A quadrilateral that has
exactly one pair of parallel sides

trapezoid

Name

rectangle	rectangle	
A parallelogram with		
four right angles		
rhombus		
SQuare		

Name

coordinate grid

coordinate grid

A grid that makes it

 easy to locate points on a plane by using an ordered pair of numbers.

x-axis

The horizontal axis in a graph or coordinate grid.

y-axis

The vertical axis in a graph or coordinate grid.

origin

The point at which the x-axis and the y-axis of a coordinate plane intersect. The origin is represented by the ordered pair $(0,0)$.

ordered pair

A pair of numbers used to locate a point on a coordinate grid.

x-coordinate

The first number in an ordered pair which names the distance from the origin along the x-axis.

x-coordinate

Point A $(2,6)$

* Move 2 units right. - Move 6 units up.

Point B $(4,3)$

* Move 4 units right. - Move 3 units up.

Name

